Journal of Organometallic Chemistry, 234 (1982) 7—14 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

SOME HIGHLY STERICALLY HINDERED ORGANO-SILANOLS AND -SILOXANES

COLIN EABORN * and KAZEM D. SAFA

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

(Received March 1st, 1982)

Summary

Reaction of the iodides TsiSiMe₂I and TsiSiPh₂I, (Tsi = (Me₃Si)₃C) with AgClO₄ in t-BuOH provides a route to the silanols TsiSiMe₂OH and (Me₃Si)₂-C(SiPh₂Me)(SiMe₂OH), respectively. TsiSiMe₂OH gives the disiloxane TsiSi-Me₂OSiMe₃ when treated with either (a) Me₃SiOClO₃ (prepared in situ from AgClO₄ and Me₃SiCl) in benzene, (b) Me₃SiI (in the presence of a little (Me₃Si)₂-NH), (c) O,N-bis(trimethylsilyl)acetamide, or (d) MeLi followed by Me₃SiCl. It does not react with Me₃SiCl, but with Me₂SiCl₂ gives TsiSiMe₂OSiMe₂Cl, and with CH₃COCl gives TsiSiMe₂OCOCH₃. The disiloxane is stable to methanolic acid or base, but reacts with KOH in H₂O/Me₂SO and with CF₃COOH to give TsiSiMe₂OH. The disiloxane (Me₃Si)₂C(SiPh₂Me)(SiMe₂OSiMe₃) is formed by treatment of (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH) with Me₃SiI/(Me₃Si)₂NH. Treatment of TsiSiPhMeI with AgClO₄ in t-BuOH gives the silanols TsiSiPhMeOH and (Me₃Si)₂C(SiPhMe₂)(SiMe₂OH) (which with Me₃SiI/(Me₃Si)₂NH give the corresponding disiloxanes) along with some of the t-butoxide (Me₃Si)₂C(SiPh-Me₂)(SiMe₂OBu^t).

Introduction

The highly sterically hindered silanols $TsiSiMe_2OH$ ($Tsi = 'trisyl' = (Me_3Si)_3C$) and $(Me_3Si)_2C(SiPh_2Me)(SiMe_2OH)$ have been made previously by treatment of the iodides $TsiSiMe_2I$ and $TsiSiPh_2I$, respectively, with $AgClO_4$ in CH_3CN ('dried' but evidently containing some water) [1,2]. The almost exclusive formation of $TsiSiMe_2OH$ upon solvolysis of the perchlorate $TsiSiMe_2OClO_3$ in MeOH containing 1% of water has also been noted [3], and this silanol has also recently been obtained by treatment of $TsiSiMe_2X$ (X = Br or Cl) in a three-phase mixture with $n-Bu_4PCl$, KCl, H_2O , and tetradecane at $100^{\circ}C$ [4].

We have now found another route to TsiSiMe₂OH and (Me₃Si)₂C(SiPh₂Me)-

(SiMe₂OH), and have studied some reactions of the former silanol and also the preparation and properties of the disiloxanes TsiSiMe₂OSiMe₃ and (Me₃Si)₂-C(SiPh₂Me)(SiMe₂OSiMe₃). The results are described below.

Results and discussion

Preparation of the silanols

A new route to TsiSiMe₂OH was discovered during an attempt to make the t-butoxide TsiSiMe₂OBu^t by treatment of TsiSiMe₂I with AgClO₄ in dried t-BuOH. Although the t-BuOH had been dried by standard methods, the product was very predominantly the silanol, apparently containing about 5—10% of the t-butoxide; the latter can be converted into the hydroxide by boiling a solution of the product mixture with MeOH containing sulphuric acid. The rearranged hydroxide (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH) was similarly obtained in high yield from TsiSiPh₂I under the same conditions. However, TsiSiPhMeI gave the rearranged t-butoxide (Me₃Si)₂C(SiPhMe₂)(SiMe₂OBu^t) in 14% yield along with unrearranged and rearranged hydroxides (see below). (Hydroxides seem to be formed during the reaction, and not only from initially produced silyl perchlorates during the aqueous work-up; the source of the hydroxides is under study [5].)

Properties of the silanol TsiSiMe₂OH

We first note that, as a result of a transcription error, we previously gave incorrect ¹H NMR data for TsiSiMe₂OH [1], as pointed out by Damrauer [4]; our actual data agree well with those given by Damrauer. We do not, however, agree with him in his observation that the signal from the proton of the OH group is unchanged when a solution of the silanol in CCl₄ is shaken with D₂O. We have confirmed the earlier report [1] that the signal does disappear under these conditions, and quite rapidly (the shaking for 0.5 h which we used previously [1] is unnecessary), and, of course, it reappears on shaking with H₂O *. We have also found, in conflict with the implications of observations by Damrauer (who used BuLi), that TsiSiMe₂OH is converted into TsiSiMe₂OLi by MeLi, since subsequent treatment with Me₃SiCl gives the siloxane TsiSiMe₂OSi-Me₃, whereas TsiSiMe₂OH itself does not react with Me₃SiCl.

$${\rm TsiSiMe_2OH + MeLi \rightarrow TsiSiMe_2OLi} \xrightarrow{\rm Me_3SiCl} {\rm TsiSiMe_2OSiMe_3}$$

Interestingly, this siloxane was not obtained when TsiSiMe₂OH in benzene was refluxed with potassium and Me₃SiCl then added. The metal dissolved, but the product was (Me₃Si)₂CHSiMe₂OSiMe₃, an isomer of the original silanol. It is possible that the added Me₃SiCl played no direct part (though it would serve to quench any organopotassium species present), and that the silanolate ion underwent an intramolecular rearrangement:

$$(\text{Me}_3\text{Si})_2\text{C} \xrightarrow{\text{SiMe}_3} (\text{Me}_3\text{Si})_2\overline{\text{C}}\text{SiMe}_2\text{OSiMe}_3 \xrightarrow{\text{H}^+} (\text{Me}_3\text{Si})_2\text{CHSiMe}_2\text{OSiMe}_3$$

^{*} A collaborative reinvestigation by Dr. Damrauer and ourselves has failed to resolve the discrepancy.

We hope to study this reaction further under more controlled conditions *.

The TsiSiMe₂OH was found to react readily with acetyl chloride, conversion into the acetate TsiSiMe₂OCOCH₃ being complete within 20 min at room temperature:

TsiSiMe₂OH + CH₃COCl → TsiSiMe₂OCOCH₃ + HCl

The silanol reacted with an excess of Me₂SiCl₂ under reflux (the 5 h period used may not be necessary) to give TsiSiMe₂OSiMe₂Cl, which readily undergoes hydrolysis to give the disiloxane (TsiSiMe₂OSiMe₂)₂O:

 $TsiSiMe_2OH + Me_2SiCl_2 \rightarrow TsiSiMe_2OSiMe_2Cl \xrightarrow{H_2O} (TsiSiMe_2OSiMe_2)_2O$

While the silanol does not react with Me₃SiCl, even on prolonged reflux, it reacts with the more active silylating agents bis(trimethylsilyl)acetamide and Me₃SiI; the latter (used in the presence of a little (Me₃Si)₂NH to take up HI) gave a 92% yield of the expected disiloxane:

TsiSiMe₂OH + CH₃C(OSiMe₃)=NSiMe₃ → TsiSiMe₂OSiMe₃

TsiSiMe₂OH + Me₃SiI → TsiSiMe₂OS:Me₃

This disiloxane can be obtained (in high yield) indirectly from Me₃SiCl and the silanol by bringing the reagents together in the presence of AgClO₄ in benzene or CH₃CN, the reaction presumably proceeding through the intermediate formation of the perchlorate Me₃SiOClO₃.

Me₃SiCl + AgClO₄ → Me₃SiOClO₃ + AgCl

TsiSiMe₂OH + Me₃SiOClO₃ → TsiSiMe₂OSiMe₃ + HClO₄

The disiloxane TsiSiMe₂OSiMe₃ has a low reactivity; the serious steric hindrance would be expected to inhibit any nucleophilic attack at the silicon atom of the TsiSiMe2 group, leading to cleavage of the Si-OSiMe3 bond, but attack on the SiMe₃ group, with cleavage of the O-SiMe₃ bond, would not necessarily be prohibited (although models reveal that it might be difficult to attach 5 groups to the silicon of the Me₃Si group in a transition state, and even protonation of the oxygen atom would increase the already serious crowding). No reaction was observed when TsiSiMe₂OSiMe₃ was treated with (a) 2.5 M HCl in MeOH for 24 h at room temperature; (b) 1 M NaOMe in MeOH under reflux for 3 h; (c) KF/18-crown-6 in CH₂Cl₂ under reflux for 7 h; or (d) KF in MeOH under reflux for 3 days. However, the siloxane was cleaved by (a) anhydrous CF₂CO₂H, which quite rapidly gave TsiSiMe₂OH (and presumably Me₃SiO₂CCF₃, i.e. the Me₃Si—O bond is broken, but not the TsiSiMe₂—O bond), and (b) KOH in 1/9 v/v H₂O/Me₂SO. In this powerfully basic medium there was also some Si—C bond cleavage, some TsiH being formed along with the predominant product TsiSiMe₂OH.

 $TsiSiMe_2OSiMe_3 + CF_3CO_2H \rightarrow TsiSiMe_2OH + Me_3SiO_2CCF_3$

TsiSiMe₂OSiMe₃ + KOH/H₂O/Me₂SO → TsiSiMe₂OH

^{*} Rearrangement does occur when TsiSiMe2OH is refluxed with NaOMe/MeOH [5].

Preparations of $(Me_3Si)_2C(SiPh_2Me)(SiMe_2OSiMe_3)$, $TsiSiPhMeOSiMe_3$, $(Me_3Si)_2C(SiPhMe_2)(SiMe_2OSiMe_3)$, and $(Me_3Si)_2C(SiPhMe_2)(SiMe_2OBu^t)$

Treatment of the silanol (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH) with Me₃SiI/(Me₃Si)₂-NH gave a high yield of the expected disiloxane:

 $(Me_3Si)_2C(SiPh_2Me)(SiMe_2OH) + Me_3SiI \rightarrow (Me_3Si)_2C(SiPh_2Me)(SiMe_2OSiMe_3)$

After treatment of TsiSiPhMeI with AgClO₄ in t-BuOH, GLC gave two peaks in ca. 4/1 ratio. Preparative TLC then gave two components; the first was judged from its ¹H NMR spectrum to be a mixture of the unrearranged and rearranged silanols TsiSiPhMeOH and (Me₃Si)₂C(SiPhMe₂)(SiMe₂OH), and treatment of the mixture with Me₃SiI/(Me₃Si)₂NH and subjection of the product to preparative GLC gave the corresponding disiloxanes (Me₃Si)₃CSiPhMeOSiMe₃ and (Me₃Si)₂-C(SiPhMe₂)(SiMe₂OSiMe₃). The second component from the TLC was shown to be the rearranged t-butoxide (Me₃Si)₂C(SiPhMe₂)(SiMe₂OBu^t), which was isolated in 14% yield.

Experimental

¹H NMR Spectra. These were recorded at 90 MHz using CCl₄ solution containing CH₂Cl₂ as reference and lock.

Materials. The iodides $TsiSiMe_2I$, $TsiSiPh_2I$ and TsiSiPhMeI were prepared as previously described [6]. t-Butanol was dried by refluxing over CaO, followed by distillation from CaH_2 . Silver perchlorate (supplied as 'anhydrous') was dried over P_2O_5 for 48 h at 1 mmHg.

Preparction of TsiSiMe₂OH and (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH)

- (a) A solution of TsiSiMe₂I (0.50 g, 1.2 mmol) and AgClO₄ (0.30 g, 1.47 mmol) in t-BuOH (20 cm³) was refluxed for 0.5 h. The solution was then cooled, hexane was added, the solution was decanted from the silver iodide, shaken several times with water, then evaporated to leave TsiSiMe₂OH (0.35 g, 98%, if pure); ¹H NMR, δ (ppm) 0.23 (s, 27 H, Me₃Si), 0.31 (s, 6 H, Me₂Si), and 1.34 (s, 1 H, OH). The presence of small signals in the region δ ca. 1.39 indicated that 5–10% of butoxide product was present. The impurity was removed by refluxing the product for 1 h with MeOH containing 10% v/v of concentrated aqueous sulphuric acid.
- (b) A similar procedure starting from TsiSiPh₂I (1.0 g, 1.85 mmol), AgClO₄ (0.45 g, 2.2 mmol) and t-BuOH (30 cm³) gave (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH) (0.75 g, 95%), ¹H NMR δ (ppm) 0.16 (s, Me₂Si), 0.20 (s, Me₃Si), 0.96 (s, SiPh₂Me), 1.71 (br. s, OH), 7.2–8.1 (m, Ph). Signals indicating the possible presence of a small amount of butoxide products disappeared upon recrystallization.

Treatment of TsiSiMe₂OH and (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH) with Me₃SiCl A mixture of TsiSiMe₂OH (0.10 g) and Me₃SiCl (10 cm³) was refluxed for 6 h. The Me₃SiCl was then distilled off, and the residue was kept under vacuum (ca. 1 mmHg) for some time to ensure complete removal of the Me₃SiCl. The solid thus obtained was shown by its ¹H NMR spectrum and GLC retention time to be unchanged TsiSiMe₂OH.

Identical results were obtained in similar experiments involving various reflux times up to 48 h.

Similar experiments with (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH), but with reflux for up to 7 days, gave unchanged starting material.

Reaction of TsiSiMe₂OH with N,O-bis(trimethylsilyl)acetamide (BSA)

A solution of TsiSiMe₂OH (0.18 g, 0.58 mmol) and BSA (0.25 g, 1.23 mmol) in anhydrous CHCl₃ (10 cm³) was refluxed for 48 h with exclusion of moisture, small additional amounts of BSA being added from time to time. The solvent and other volatile materials were removed in vacuo. (The CH₃CONHSiMe₃ sublimed out rapidly at 50°C under 0.2 mmHg pressure.) GLC examination of the residue showed two peaks, in the ratio of ca. 2/3, and the two components were separated by preparative GLC (2 m 20% OV101 on 80–100 mesh Chromosorb P at 200°C with N₂ as carrier gas). The minor component was shown to be unchanged TsiSiMe₂OH, and the other was identified as TsiSiMe₂OSiMe₃, m.p. 53°C, ¹H NMR, δ (ppm): 0.08 (s, 9 H, SiMe₃), 0.19 (s, 27 H, Me₃Si), 0.27 (s, 6 H, Me₂Si) (Found: C, 47.5; H, 10.6. C₁₅H₄₂OSi₅ calcd.: C, 47.6; H, 11.1%). The mass spectrum showed the expected strong (M — Me)⁺ peak at m/e 363 (with relative intensity of 85), and other prominent ions appeared at 275 (17, (M — Me — SiMe₄)⁺) 147 (15) and 73 (100).

Reaction of TsiSiMe₂OH with Me₃SiI/(Me₃Si)₂NH

A mixture of TsiSiMe₂OH (0.10 g, 0.32 mmol), Me₃SiI (3 cm³) and (Me₃Si)₂-NH (0.3 cm³) was refluxed for 2 h. The Me₃SiI was then distilled off, and other volatile materials (including (Me₃Si)₂O) were pumped off to leave TsiSiMe₂OSi-Me₃ (0.11 g, 92%), with properties identical to those listed above.

Reaction of TsiSiMe₂OH with Me₃SiOClO₃

- (a) A solution of AgClO₄ (0.91 g, 4.4 mmol) in benzene (10 cm³) was added to a solution of TsiSiMe₂OH (0.30 g, 0.98 mmol) and Me₃SiCl (0.52 g, 4.9 mmol) in benzene (10 cm³), and the mixture was stirred at room temperature for 10 min. The benzene solution was decanted from the AgCl, then shaken several times with water. The solvent and any other volatile materials were removed (finally under vacuum) to give TsiSiMe₂OSiMe₃ (0.32 g, 87%), with properties identical to those listed above.
- (b) A solution of TsiSiMe₂OH (0.10 g, 0.32 mmol) in CH₃CN (2 cm³) was added to a mixture of Me₃SiCl (0.048 g, 0.45 mmol) and AgClO₄ (0.086 g, 0.42 mmol) (in this case the commercially supplied "anhydrous" salt was used as supplied) in CH₃CN (3 cm³). The mixture was refluxed for 2 h, then cooled. Addition of water was followed by extraction with hexane. The hexane layer was shaken several times with water then evaporated to leave TsiSiMe₂OSiMe₃ (0.099 g, 82%), with properties identical to those described above.

Treatment of TsiSiMe₂OH with MeLi then Me₃SiCl

The TsiSiMe₂OH (0.20 g, 0.65 mmol) was refluxed with 1.3 M MeLi (prepared from MeCl or MeBr) in Et₂O (6 cm³) for 3 h. An excess of Me₃SiCl (2 cm³) was added and the mixture was refluxed for 1 h. (This refluxing may not be necessary.) Additional ether was added and the solution was then washed

several times with water. The solvent and other volatile material were then removed to leave TsiSiMe₂OSiMe₃ (0.18 g, 72%), with properties identical to those described above.

Reaction of TsiSiMe₂OH with potassium

A mixture of TsiSiMe₂OH (1.0 g, 3.30 mmol), potassium (0.30 g, 7.6 mmol), and anhydrous benzene (15 cm³) was refluxed under dry N₂ for 5 h, during which a substantial amount of the metal disappeared and the mixture became violet. An excess of Me₃SiCl (5 cm³) was added and the mixture was stirred at room temperature for 12 h. Water was then cautiously added followed by some additional benzene, and the benzene layer was shaken several times with water and evaporated. Analysis of the residue by GLC indicated that there was a major product representing about 85% of the mixture, along with small quantities of several other materials. The major product was isolated as a liquid by preparative GLC (2.5 m 20% OV101 on 80—100 mesh Chromosorb P at 110—250° C with N₂ as carrier gas) and shown to be (Me₃Si)₂CH(SiMe₂OSiMe₃); ¹H NMR, δ(ppm) —0.06 (s, 1 H, CH), 0.06 (s, 9 H, SiMe₃), 0.08 (s, 18 H, Me₃Si), 0.16 (s, 6 H, Me₂Si) (Found: C, 47.05; H, 10.8. C₁₂H₃₄OSi₄ calcd.: C, 47.05; H, 11.1%). The mass spectrum showed the expected (M — Me)⁺ ion as the base peak at m/e 291, with other prominent ions at m/e 203 (16) and 73 (52).

Reaction of TsiSiMe₂OH with Me₂SiCl₂

The TsiSiMe₂OH (0.10 g, 0.32 mmol) was refluxed with Me₂SiCl₂ (5 cm³) for 5 h. The Me₂SiCl₂ was then distilled off, and the residue kept under vacuum for 0.5 h; its ¹H NMR spectrum, δ (ppm) 0.42 (s, 27 H, Me₃Si), 0.56 (s, 6 H, CSiMe₂O), and 0.63 (s, 6 H, SiMe₂Cl), was consistent with the formulation TsiSiMe₂OSiMe₂Cl. Hexane was added, and the solution was shaken several times with water. Evaporation of the hexane left a solid, which was sublimed to give (TsiSiMe₂OSiMe₂)₂O, m.p. 96–97°C; ¹H NMR spectrum, δ (ppm) 0.12 (s, 12 H, OSiMe₂O), 0.23 (s, 54 H, Me₃Si), 0.33 (s, 12 H, CSiMe₂O) (Found: C, 45.0; H, 10.5. C₂₈H₇₈O₃Si₁₀ calcd.: C, 45.3; H, 10.5%).

Reaction of TsiSiMe₂OH with CH₃COCl

The TsiSiMe₂OH (0.2 g) was stirred with an excess of CH₃COCl (ca. 5 cm³) at room temperature for 20 min. Hexane was then added, the solution was washed several times with water. The solvent and other volatile material were evaporated off to leave pure TsiSiMe₂OAc, which was identified by comparison of its spectroscopic properties with those of an authentic sample [6].

Reaction of (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH) with Me₃SiI/(Me₃Si)₂NH
A mixture of (Me₃Si)₂C(SiPh₂Me)(SiMe₂OH) (0.30 g, 0.69 mmol), Me₃SiI (5 cm³) and (Me₃Si)₂NH (0.5 cm³) was refluxed under dry N₂ for 2 h. Volatile materials were removed, and the residue was taken up in hexane. The solution was shaken several times with water then evaporated to leave a solid. GLC analysis showed that there was a very dominant product, which constituted about 95% of the mixture, along with small amounts of other products. The major product was purified by TLC (silica gel, hexane) and shown to be (Me₃Si)₂C(SiPh₂Me)(SiMe₂OSiMe₃), m.p. 100—102°C, ¹H NMR, δ(ppm) 0.20

(s, Me₃Si) and 0.24 (s, Me₃Si + Me₂Si) (these two singlets together equivalent to 33 H), 0.93 (s, 3 H, MeSi), and 7.1–8.0 (m, 10 H, aryl-H) (Found: C, 59.8; H, 8.9. $C_{25}H_{46}OSi_5$ calcd.: C, 59.8; H, 9.2%).

The mass spectrum showed the expected $(M - Me)^+$ ion at 487 (relative intensity 35), and other prominent ions at 409 (27, $(M - Me - PhH)^+$) 290 (19), 197 (38), 147 (23), 135 (62), and 73 (100).

Reaction of TsiSiPhMeI with AgClO₄ in t-BuOH

A mixture of TsiSiPhMeI (1.0 g, 2.09 mmol), AgClO₄, (0.51 g, 2.51 mmol), and t-BuOH (30 cm³) was refluxed for 0.5 h. The solution was decanted from the AgI, and water and hexane were added. The hexane layer was shaken several times with water then evaporated. Examination of the residue by GLC (2 m, 5% OV101 on 100—120 mesh Chromosorb P at 220°C) showed two peaks A and B (in order of increasing retention time) in the ratio of ca. 4/1. These two components were separated by preparative TLC (silica gel, hexane).

The ¹H NMR spectrum suggested that A (0.63 g, 62%) was a mixture of TsiSiPhMeOH and $(Me_3Si)_2C(SiPhMe_2)(SiMe_2OH)$: $\delta(ppm)$, 0.22 (s, $SiMe_2OH)$, 0.24 (s, Me₃Si), 0.26 (s, Me₃Si) (all three peaks together equivalent to 51 H), 0.58 (s, SiMe₂ + SiMe, 9 H), 1.45 (broad s, 2 H, OH), 7.2–7.9 (m, 10 H, aryl-H); the signal at δ 1.45 ppm disappeared when the solution in CCl₄ was shaken for 5 min with D₂O. A sample of the mixture A was sublimed (125° C/0.1 mmHg) to provide an analytical sample (Found: C, 55.4; H, 9.8. C₁₇H₃₆OSi₄ calcd.: C, 55.4; H, 9.8%); the mass spectrum showed the expected $(M - Me)^+$ ion at 353 (relative intensity 75), with other prominent ions at 337 (50), 275 (75), 135 (50), 73 (100). Component B was identified as (Me₃Si)₂C(SiPhMe₂)(SiMe₂OBu^t) (0.14 g, 14%), m.p. $73-75^{\circ}\text{C}$; ¹H NMR, $\delta(\text{ppm})$ 0.25 (s, 18 H, Me₃Si), 0.34 (s, 6 H, SiMe₂O), 0.60 (s, 6 H, SiMe₂), 1.34 (s, 9 H, OBu^t), 7.2-7.9 (m, 5 H, aryl-H) (Found: C, 59.5; H, 10.6. $C_{21}H_{44}OSi_4$ calcd.: C, 59.4; H, 10.4%). The mass spectrum showed a weak $(M - Me)^+$ peak at m/e 409 (relative intensity 2), with a base peak at 353 ($M - Me - CH_2 = CMe_2$?), and other significant peaks at 351 (5, M - OBu?), 337 (30), 335 (20), 275 (25), 135 (20) and 73 (40).

 $Preparation \ of \ TsiSiPhMeOSiMe_3 \ and \ (Me_3Si)_2C(SiPhMe_2)(SiMe_2OSiMe_3)$

The mixture A (0.20 g, 0.54 mmol) from the preceding experiment was treated with (Me₃Si)₂NH (0.4 cm³) and Me₃SiI (3 cm³). After 2 h reflux volatile material was distilled off, and hexane was added. The solution was washed several times with water, and the solvent was then removed to leave a semisolid. GLC showed that this contained two components C and D (in order of increasing retention time) in the approximate ratio 3/7. These were separated by preparative GLC (2.5 m 5% OV101 on 80–100 mesh Chromosorb P at 250°C with N₂ as carrier gas). Component A was a solid, m.p. 124–126°C, and was identified as TsiSiPhMeOSiMe₃; ¹H NMR, δ (ppm) 0.06 (s, 9 H, Me₃Si), 0.21 (s, 27 H, Me₃Si), and 0.65 (s, 3 H, MeSi) (Found: C, 54.5; H, 9.8. C₂₀H₄₄OSi₅ calcd.: C, 54.5; H, 10.0%). Component D was a liquid, identified as (Me₃Si)₂C(SiPhMe₂)(SiMe₂OSiMe₃), ¹H NMR, δ (ppm) 0.17 (s, 9 H, Me₃Si), 0.20 (s, SiMe₂O) and 0.21 (s, SiMe₃) (together corresponding to 24 H), 0.55 (s, 6 H, SiPhMe₂), and 7.2–7.9 (m, 5 H, aryl-H) (Found: C, 54.7; H, 10.0. C₂₀H₄₄OSi₅ calcd.: C, 54.5; H, 10.0%).

Treatment of $(Me_3Si)_2C(SiPhMe_2)(SiMe_2OBu^t)$ with CF_3COOH in MeOH

A solution of (Me₃Si)₂C(SiPhMe₂)(SiMe₂OBu^t) (ca. 0.1 g) in MeOH (5 cm³) containing 1 M CF₃CO₂H was kept at 50°C for 1 h. (The ¹H NMR spectrum of the solution after this time showed that no benzene had been formed.) The usual work-up gave only unchanged starting material.

Reaction of TsiSiMe₂OSiMe₃ with CF₃CO₂H

A solution of TsiSiMe₂OSiMe₃ in CF₃CO₂H was kept in an NMR tube at room temperature. After 20 min the ¹H NMR spectrum was recorded and showed that complete conversion into TsiSiMe₂OH had occurred. The usual work-up gave only TsiSiMe₂OH.

Reaction of TsiSiMe₂OSiMe₃ with KOH in 1/9 v/v H₂O/Me₂SO

The TsiSiMe₂OSiMe₃ (0.10 g) was dissolved in mixture of 0.1 M KOH (0.2 cm³) with Me₂SO (1.8 cm³), and the solution was kept at 75°C for 4 h. Hexane was added, and the organic layer was washed several times with water and then evaporated. The residue was analysed by GLC, which, on the basis of the retention times, indicated the presence of TsiH (21%), TsiSiMe₂OH (50%), and unchanged TsiSiMe₂OSiMe₃ (9%).

Treatment of TsiSiMe₂OSiMe₃ with various reagents

The disiloxane was recovered unchanged, after the following procedures:

- (a) A solution in (i) MeOH containing 2.5 M HCl or (ii) dioxane containing 1.7 M HCl was kept at room temperature for 24 h.
 - (b) A solution in MeOH containing 1 M NaOMe was refluxed for 3 h.
- (c) A solution in MeOH (5 cm³) containing anhydrous KF (0.20 g) was refluxed for 3 days.
- (d) A solution (0.37 g) in CH₂Cl₂ (7 cm³) was added to CH₂Cl₂ (10 cm³) containing KF (63 mg) and 18-crown-6 (0.26 g) and the mixture was refluxed for 7 h. (Some NaCl was added before the washing with water in the usual work-up).

Acknowledgements

We thank the S.E.R.C. for support of this work, Dr. D.A.R. Happer for valuable comments, Dr. D.R.M. Walton for help in various ways, and Dow Corning, Ltd., for a gift of trimethylchlorosilane.

References

- 1 S.S. Dua and C. Eaborn, J. Organometal. Chem., 204 (1981) 21.
- 2 C. Eabern, P.B. Hitchcock and K.D. Safa, J. Organometal. Chem., 222 (1981) 187.
- 3 C. Eaborn and F.M.S. Mahmoud, J. Chem. Soc., Perkin Trans, II, (1981) 1309.
- 4 R. Damrauer, J. Organometal. Chem., 216 (1981) C1.
- 5 D.A.R. Happer, personal communication.
- 6 S.S. Dua, C. Eaborn, D.A.R. Happer, S.P. Hopper, K.D. Safa and D.R.M. Walton, J. Organometal. Chem., 178 (1979) 75.